Copula-Based Markov Models for Time Series

Synopsis
This book provides statistical methodologies for time series data, focusing on copula-based Markov chain models for serially correlated time series. It also includes data examples from economics, engineering, finance, sport and other disciplines to illustrate the methods presented. An accessible textbook for students in the fields of economics, management, mathematics, statistics, and related fields wanting to gain insights into the statistical analysis of time series data using copulas, the book also features stand-alone chapters to appeal to researchers.
As the subtitle suggests, the book highlights parametric models based on normal distribution, t-distribution, normal mixture distribution, Poisson distribution, and others. Presenting likelihood-based methods as the main statistical tools for fitting the models, the book details the development of computing techniques to find the maximum likelihood estimator. It also addresses statistical process control, as well as Bayesian and regression methods. Lastly, to help readers analyze their data, it provides computer codes (R codes) for most of the statistical methods.
- Derechos de autor:
- 2020 Springer
Book Details
- Book Quality:
- ISBN-13:
- 9789811549984
- Publisher:
- Springer Singapore, Singapore
- Date of Addition:
- 2020-08-02T19:51:28Z
- Idioma:
- English
- Categorías:
- Business and Finance, Mathematics and Statistics, Nonfiction, Science,
- Usage Restrictions:
- This is a copyrighted book.
Choosing a Book Format
EPUB is the standard publishing format used by many e-book readers including iBooks, Easy Reader, VoiceDream Reader, etc. This is the most popular and widely used format.
Audio DAISY format is used by GoRead, Read2Go and most Kurzweil devices.
Audio (MP3) format is used by audio only devices, such as iPod.
Braille format is used by Braille output devices.
DAISY Audio format works on DAISY compatible players such as Victor Reader Stream.
Accessible Word format can be unzipped and opened in any tool that supports .docx files.